infistream

Referensi

  1. Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge. ISBN
    978-0-262-20019-6
  2. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluids at
    very large Reynolds numbers. Doklady AN SSSR 30:299–303
  3. Kolmogorov AN (1941) Dissipation of energy in isotropic turbulence. Dokl Akad Nauk SSSR
    32:19–21.é
  4. Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow
    up to Reτ = 590. Phys Fluids 11(4):943–945
  5. Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial
    flow. Ann Rev Fluid Mech. 31:567–603
  6. Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward-
    facing step. J Fluid Mech 330:349–374
  7. Choi H, Moin P, Kim J (1993) Direct numerical simulation of turbulent flow over Riblets.
    J Fluid Mech 255:503–539
  8. Leonard A (1974) Energy cascade in large-eddy simulations of turbulent fluid flows. Adv
    Geophys A 18:237–248
  9. Sagaut P (2006) Large eddy simulation for incompressible flows-an introduction. Springer,
    Berlin
  10. Ferziger JH (1995) Large eddy simulation. In: Hussaini MY, Gatski T (eds) Simulation and
    modeling of turbulent flows. Cambridge University Press, New York
  11. Nieuwstadt FTM, Mason PJ, Moeng C-H, Schuman U (1991) Large eddy simulation of the
    convective boundary layer: a comparison of four computer codes. In: Durst F et al (eds)
    Turbulent shear flows, 8th edn. Springer, Berlin
  12. Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the
    determination of the criterion. Philos Trans Royal Soc London A 186:123–164
  13. Favre A (1965) Equations des Gas Turbulents Compressibles. Journal de Mecanique 4
    (3):361–390
  14. Boussinesq J (1877) Essai sur la théorie des eaux courantes. Mémoires présentés par divers
    savants à l’Académie des Sciences 23(1):1–680
  15. Schlichting H (1968) Boundary-layer theory, 6th edn. Chapter XIX. McGraw Hill
  16. Schmitt FG (2007) About Boussinesq’s turbulent viscosity hypothesis: historical remarks and
    a direct evaluation of its validity. Comptes Rendus Mécanique 335(9 and 10):617–627
  17. Prandtl L (1925) Uber die ausgebildete Turbulenz. ZAMM 5:136–139
  18. Baldwin BS, Lomax H (1978) Thin-Layer approximation and algebraic model for separated
    turbulent flows. AIAA Paper, Huntsville, pp 78–257
  19. Cebeci T, Smith AMO (1974) Analysis of turbulent boundary layers. Ser Appl Math Mech,
    vol XV, Academic Press, Waltham
  20. Baldwin BS, Barth TJ (1990) A one-equation turbulence transport model for high reynolds
    number wall-bounded flows. NASA TM-102847
  21. Goldberg UC (1991) Derivation and testing of a one-equation model based on two time scales.
    AIAA J 29(8):1337–1340
  22. Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows.
    AIAA Paper, Reno, pp 92–439
  23. Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of
    turbulence. Int J Heat Mass Transf 15:301–314
  24. Launder BE, Sharma BI (1974) Application of the energy dissipation model of turbulence to
    the calculation of flow near a spinning disk. Lett Heat Mass Transfer 1(2):131–138
  25. Chien K-Y (1982) Predictions of channel and boundary-layer flows with a low-reynolds-
    number turbulence model. AIAA J 20(1):33–38
  26. Myong HK, Kasagi N (1990) A new approach to the improvement of k-ε turbulence model for
    wall-bounded shear flows. JSME Int J 33:63–72
  27. Kolmogorov AN (1942) Equations of turbulent motion of an incompressible fluid. Izvestia
    Acad Sci USSR Phys 6(1 and 2):56–58
  28. Wilcox D (1988) Reassessment of the scale-determining equation for advanced turbulence
    models. AIAA J 26(11):1299–1310
  29. Wilcox DC (1998) Turbulence modeling for CFD, 2nd edn. DCW Industries, US
  30. Menter FR (1992) Influence of freestream values on k − ω turbulence model predictions.
    AIAA J 30(6):1657–1659
  31. Menter FR (1993) Zonal two-equation k − ω turbulence model for aerodynamic flows. AIAA
    Paper, Orlando, pp 1993–2906
  32. Menter F (1994) Two-equation eddy-viscosity turbulence models for engineering applications.
    AIAA J 32(8):1598–1605
  33. Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST
    turbulence model, 4th edn. Turbulence, Heat and Mass Transfer, Antalya, pp 73–86
  34. Menter FR, Carregal Ferreira J, Esch T, Konno B (2003) The SST turbulence model with
    improved wall treatment for heat transfer predictions in gas turbines. In: Proceedings of the
    international gas turbine congress, Tokyo, IGTC2003-TS-059
  35. Menter FR (2009) Review of the shear-stress transport turbulence model experience from an
    industrial perspective. Int J Comput Fluid Dyn 23(4):305–316
  36. Daky BJ, Harlow FH (1970) Transport equations in turbulence. Phys Fluids 13:2634–2649
  37. Fu S, Launder BE, Tselepidakis DP (1987) Accommodating the effects of high strain rates in
    modelling the pressure-strain correlation. Report no. TFD/87/5, Mechanical Engineering
    Department, Manchester Institute of Science and Technology, England
  38. Gibson MM, Launder BE (1986) Ground effects on pressure fluctuations in the atmospheric
    boundary layer. J Fluid Mech 86(Pt. 3):491–511
  39. Gibson MM, Younis BA (1986) Calculation of swirling jets with a reynolds stress closure.
    Phys Fluids 29:38–48
  40. Wilcox DC, Rubesin MW (1980) Progress in turbulence modeling for complex flow fields
    including effects of compressibility. NASA TP-1517
  41. Wilcox DC (1988) Multiscale model for turbulent flows. AIAA J 26(11):1311–1320
  42. Patel VC, Rodi W, Scheuerer G (1985) Turbulence models for near-wall and low reynolds
    number flows: a review. AIAA J 23(9):1308–1319
  43. Medic G, Durbin PA (2002) Toward improved
  44. Sahay A, Sreenivasan KR (1999) The wall-normal position in pipe and channel flows at
  45. Bredberg J (2000) On the wall boundary condition for turbulence models. Department of
    Thermo and Fluid Dynamics, Chalmers University of Technology, Internal report 00/4,
    Goteborg
  46. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput
    Methods Appl Mech Eng 3:269–289
  47. Grotjans H, Menter F(1998) Wall function for general application cfd codes. In:
    Computational fluid dynamics 1998, Proceedings fourth European CFD Conference
    ECCOMAS, Wiley, Chichester
  48. Menter F, Esch T (2001) Elements of industrial heat transfer prediction. In: Proceedings 16th
    Brazilian congress of mechanical engineering (COBEM), pp 117–127
  49. Kader BA (1981) Temperature and concentration profiles in fully turbulent boundary layers.
    Int J Heat Mass Transf 24:1541–1544
  50. Tucker PG (2003) Differential equation-based wall distance computation for DES and RANS.
    J Comput Phys 190:229–248
  51. Sethian JA (1999) Fast marching methods. SIAM Rev 41(2):199–235
  52. Tucker PG, Rumsey CL, Spalart PR, Bartels RE, Biedron RT (2004) Computations of wall
    distances based on differential equations. AIAA Paper 2004–2232
  53. Xu J-L, Yan C, Fan J-J (2011) Computations of wall distances by solving a transport equation.
    Appl Math Mech 32(2):141–150
  54. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org
  55. Hellsten A (1998) Some improvements in menter’s k-omega-SST turbulence model. In: 29th
    AIAA fluid dynamics conference, AIAA-98-2554
  56. OpenFOAM Doxygen (2015) Version 2.3.x. http://www.openfoam.org/docs/cpp/
Open chat
Infichat
Hello 👋
Thank you for text me
Can we help you?